numpy.multiply#

numpy.multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'multiply'>#

对参数进行逐元素乘法运算。

参数:
x1, x2array_like

要相乘的输入数组。如果 x1.shape != x2.shape,它们必须能够广播到相同的形状(这将成为输出的形状)。

outndarray, None, 或 ndarray 和 None 的元组, 可选

存储结果的位置。如果提供,其形状必须与输入广播后的形状一致。如果未提供或为 None,则返回新分配的数组。元组(只能作为关键字参数)的长度必须等于输出的数量。

wherearray_like, 可选

此条件将广播到输入上。在条件为 True 的位置,out 数组将被设置为 ufunc 结果。在其他位置,out 数组将保留其原始值。请注意,如果通过默认的 out=None 创建了未初始化的 out 数组,则其中条件为 False 的位置将保持未初始化。

**kwargs

有关其他仅限关键字的参数,请参阅 ufunc 文档

返回:
yndarray

x1x2 的逐元素乘积。如果 x1x2 都是标量,则结果为标量。

备注

在数组广播方面,等同于 x1 * x2

示例

>>> import numpy as np
>>> np.multiply(2.0, 4.0)
8.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])

在 ndarray 上,* 运算符可用作 np.multiply 的简写。

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 * x2
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])