numpy.multiply#

numpy.multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'multiply'>#

逐元素相乘参数。

参数:
x1, x2array_like

要相乘的输入数组。如果 x1.shape != x2.shape,它们必须可广播到公共形状(该公共形状将成为输出的形状)。

outndarray, None, or tuple of ndarray and None, optional

结果存储的位置。如果提供了,它必须具有输入广播到的形状。如果未提供或为 None,则返回一个新分配的数组。元组(仅可能作为关键字参数)的长度必须等于输出的数量。

wherearray_like, optional

此条件将广播到输入。在条件为 True 的位置,out 数组将设置为 ufunc 结果。在其他地方,out 数组将保留其原始值。请注意,如果通过默认的 out=None 创建了一个未初始化的 out 数组,那么其中条件为 False 的位置将保持未初始化状态。

**kwargs

有关其他关键字参数,请参阅 ufunc 文档

返回:
yndarray

x1x2 的乘积,逐元素计算。如果 x1x2 都是标量,则结果也是标量。

备注

在数组广播方面,等同于 x1 * x2

示例

>>> import numpy as np
>>> np.multiply(2.0, 4.0)
8.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])

对于 ndarrays,`*` 运算符可以用作 `np.multiply` 的简写。

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 * x2
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])