numpy.ma.polyfit#
- ma.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)[source]#
最小二乘多项式拟合。
注意
这属于旧的多项式 API 的一部分。自 1.4 版本以来,更推荐使用
numpy.polynomial
中定义的新多项式 API。可以在过渡指南中找到差异的摘要。将 deg 次多项式
p(x) = p[0] * x**deg + ... + p[deg]
拟合到点 (x, y)。返回一个系数向量 p,该向量以 deg, deg-1, … 0 的顺序最小化平方误差。建议在新代码中使用
Polynomial.fit
类方法,因为它在数值上更稳定。有关更多信息,请参阅该方法的文档。- 参数:
- x类数组, 形状 (M,)
M 个采样点
(x[i], y[i])
的 x 坐标。- y类数组, 形状 (M,) 或 (M, K)
采样点的 y 坐标。通过传入一个每列包含一个数据集的二维数组,可以一次拟合多个共享相同 x 坐标的采样点数据集。
- deg整型
拟合多项式的次数
- rcond浮点型, 可选
拟合的相对条件数。小于最大奇异值相对值的奇异值将被忽略。默认值是 len(x)*eps,其中 eps 是浮点类型的相对精度,在大多数情况下约为 2e-16。
- full布尔型, 可选
确定返回值的性质的开关。当为 False(默认值)时,只返回系数;当为 True 时,还会返回奇异值分解的诊断信息。
- w类数组, 形状 (M,), 可选
权重。如果不是 None,则权重
w[i]
应用于x[i]
处的未平方残差y[i] - y_hat[i]
。理想情况下,权重的选择应使乘积w[i]*y[i]
的误差都具有相同的方差。使用逆方差加权时,请使用w[i] = 1/sigma(y[i])
。默认值是 None。- cov布尔型或字符串, 可选
如果给定且不为 False,则不仅返回估计值,还返回其协方差矩阵。默认情况下,协方差按 chi2/dof 进行缩放,其中 dof = M - (deg + 1),即,除了相对意义外,权重被认为是不可靠的,并且所有内容都被缩放,使得缩减的 chi2 为 1。如果
cov='unscaled'
,则省略此缩放,这适用于权重 w = 1/sigma 的情况,其中 sigma 被认为是可靠的不确定性估计。
- 返回:
- pndarray, 形状 (deg + 1,) 或 (deg + 1, K)
多项式系数,最高次幂在前。如果 y 是二维的,则第 k 个数据集的系数在
p[:,k]
中。- 残差, 秩, 奇异值, rcond
这些值仅在
full == True
时返回残差 – 最小二乘拟合的平方残差之和
- 秩 – 缩放后的范德蒙矩阵的有效秩
系数矩阵
- 奇异值 – 缩放后的范德蒙矩阵的奇异值
系数矩阵
rcond – rcond 的值。
有关更多详细信息,请参阅
numpy.linalg.lstsq
。- Vndarray, 形状 (deg + 1, deg + 1) 或 (deg + 1, deg + 1, K)
仅当
full == False
且cov == True
时才存在。多项式系数估计的协方差矩阵。此矩阵的对角线是每个系数的方差估计。如果 y 是二维数组,则第 k 个数据集的协方差矩阵在V[:,:,k]
中。
- 警告:
- RankWarning
最小二乘拟合中系数矩阵的秩不足。此警告仅在
full == False
时发出。警告可以通过以下方式关闭
>>> import warnings >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)
另请参见
polyval
计算多项式值。
linalg.lstsq
计算最小二乘拟合。
scipy.interpolate.UnivariateSpline
计算样条拟合。
备注
x 中的任何掩码值都会传播到 y 中,反之亦然。
该解决方案最小化平方误差
\[E = \sum_{j=0}^k |p(x_j) - y_j|^2\]在方程中
x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] ... x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]
系数 p 的系数矩阵是一个范德蒙矩阵。
当最小二乘拟合条件不良时,
polyfit
会发出RankWarning
警告。这意味着由于数值误差,最佳拟合未明确定义。可以通过降低多项式次数或将 x 替换为 x - x.mean() 来改善结果。参数 rcond 也可以设置为小于其默认值,但由此产生的拟合可能是不真实的:包含小奇异值的贡献会给结果增加数值噪声。请注意,当多项式次数较大或采样点区间中心不良时,拟合多项式系数本身就是条件不佳的。在这些情况下,应始终检查拟合质量。当多项式拟合不令人满意时,样条函数可能是一个很好的替代方案。
参考文献
[1]维基百科,“曲线拟合”,https://en.wikipedia.org/wiki/Curve_fitting
[2]维基百科,“多项式插值”,https://en.wikipedia.org/wiki/Polynomial_interpolation
示例
>>> import numpy as np >>> import warnings >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary
使用
poly1d
对象处理多项式很方便>>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 # may vary >>> p(3.5) -0.34732142857143039 # may vary >>> p(10) 22.579365079365115 # may vary
高阶多项式可能会剧烈震荡
>>> with warnings.catch_warnings(): ... warnings.simplefilter('ignore', np.exceptions.RankWarning) ... p30 = np.poly1d(np.polyfit(x, y, 30)) ... >>> p30(4) -0.80000000000000204 # may vary >>> p30(5) -0.99999999999999445 # may vary >>> p30(4.5) -0.10547061179440398 # may vary
图示
>>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') >>> plt.ylim(-2,2) (-2, 2) >>> plt.show()