numpy.multiply#
- numpy.multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'multiply'>#
逐元素相乘。
- 参数:
- x1, x2array_like
要相乘的输入数组。如果
x1.shape != x2.shape
,则它们必须能够广播到一个共同的形状(该形状将成为输出的形状)。- outndarray、None 或 ndarray 和 None 的元组,可选
存储结果的位置。如果提供,则其形状必须能够广播到输入。如果不提供或为 None,则返回一个新分配的数组。元组(仅可能作为关键字参数)的长度必须等于输出的数量。
- wherearray_like,可选
此条件将广播到输入。在条件为 True 的位置,out 数组将设置为 ufunc 结果。在其他位置,out 数组将保留其原始值。请注意,如果通过默认的
out=None
创建未初始化的 out 数组,则其中条件为 False 的位置将保持未初始化。- **kwargs
有关其他仅限关键字的参数,请参见 ufunc 文档。
- 返回值:
- yndarray
x1 和 x2 的逐元素乘积。如果 x1 和 x2 都是标量,则这是一个标量。
注释
就数组广播而言,等效于 x1 * x2。
示例
>>> import numpy as np >>> np.multiply(2.0, 4.0) 8.0
>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]])
*
运算符可用作 ndarray 上np.multiply
的简写。>>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> x1 * x2 array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]])