通过 cmake 使用#

就复杂性而言,cmake 介于 makemeson 之间。由于 CMake 语法不是 Python 风格的,并且更接近于使用环境变量的 make,因此学习曲线更陡峭。

但是,权衡的是增强的灵活性和对大多数架构和编译器的支持。本文档不包含对语法的介绍,但是这个丰富的 CMake 资源集合非常棒。

注意

cmake 非常流行,适用于混合语言系统,但是对 f2py 的支持并非特别原生或令人愉快;更自然的方法是考虑通过 scikit-build 使用

斐波那契数列演练 (F77)#

回到 三种包装方法 - 入门 部分中的 fib 示例。

C FILE: FIB1.F
      SUBROUTINE FIB(A,N)
C
C     CALCULATE FIRST N FIBONACCI NUMBERS
C
      INTEGER N
      REAL*8 A(N)
      DO I=1,N
         IF (I.EQ.1) THEN
            A(I) = 0.0D0
         ELSEIF (I.EQ.2) THEN
            A(I) = 1.0D0
         ELSE 
            A(I) = A(I-1) + A(I-2)
         ENDIF
      ENDDO
      END
C END FILE FIB1.F

我们不需要显式生成 python -m numpy.f2py fib1.f 输出,即 fib1module.c,这是有益的。有了它;我们现在可以初始化一个 CMakeLists.txt 文件,如下所示

cmake_minimum_required(VERSION 3.18) # Needed to avoid requiring embedded Python libs too

project(fibby
  VERSION 1.0
  DESCRIPTION "FIB module"
  LANGUAGES C Fortran
)

# Safety net
if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)
  message(
    FATAL_ERROR
      "In-source builds not allowed. Please make a new directory (called a build directory) and run CMake from there.\n"
  )
endif()

# Grab Python, 3.8 or newer
find_package(Python 3.8 REQUIRED
  COMPONENTS Interpreter Development.Module NumPy)

# Grab the variables from a local Python installation
# F2PY headers
execute_process(
  COMMAND "${Python_EXECUTABLE}"
  -c "import numpy.f2py; print(numpy.f2py.get_include())"
  OUTPUT_VARIABLE F2PY_INCLUDE_DIR
  OUTPUT_STRIP_TRAILING_WHITESPACE
)

# Print out the discovered paths
include(CMakePrintHelpers)
cmake_print_variables(Python_INCLUDE_DIRS)
cmake_print_variables(F2PY_INCLUDE_DIR)
cmake_print_variables(Python_NumPy_INCLUDE_DIRS)

# Common variables
set(f2py_module_name "fibby")
set(fortran_src_file "${CMAKE_SOURCE_DIR}/fib1.f")
set(f2py_module_c "${f2py_module_name}module.c")

# Generate sources
add_custom_target(
  genpyf
  DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
)
add_custom_command(
  OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
  COMMAND ${Python_EXECUTABLE}  -m "numpy.f2py"
                   "${fortran_src_file}"
                   -m "fibby"
                   --lower # Important
  DEPENDS fib1.f # Fortran source
)

# Set up target
Python_add_library(${CMAKE_PROJECT_NAME} MODULE WITH_SOABI
  "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}" # Generated
  "${F2PY_INCLUDE_DIR}/fortranobject.c" # From NumPy
  "${fortran_src_file}" # Fortran source(s)
)

# Depend on sources
target_link_libraries(${CMAKE_PROJECT_NAME} PRIVATE Python::NumPy)
add_dependencies(${CMAKE_PROJECT_NAME} genpyf)
target_include_directories(${CMAKE_PROJECT_NAME} PRIVATE "${F2PY_INCLUDE_DIR}")

上面定义的 CMakeLists.txt 文件的一个关键要素是,使用 add_custom_command 生成包装器 C 文件,然后通过 add_custom_target 指令将其添加为实际共享库目标的依赖项,这可以防止命令每次都运行。此外,用于获取 fortranobject.c 文件的方法也可以用于在较旧的 cmake 版本上获取 numpy 头文件。

然后,它的工作方式与其他模块相同,尽管命名约定不同,并且输出库不会自动加上 cython 信息。

ls .
# CMakeLists.txt fib1.f
cmake -S . -B build
cmake --build build
cd build
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
# [ 0.  1.  1.  2.  3.  5.  8. 13. 21.]

这在现有工具链已存在并且不鼓励使用 scikit-build 或其他额外的 python 依赖项的情况下特别有用。