多线程生成#

四个核心分布 (randomstandard_normalstandard_exponentialstandard_gamma) 都允许使用 out 关键字参数填充现有数组。现有数组需要是连续且行为良好的(可写且对齐)。在正常情况下,使用常用构造函数(例如 numpy.empty)创建的数组将满足这些要求。

此示例使用 Python 3 concurrent.futures 使用多个线程填充数组。线程是长期存在的,因此重复调用不需要线程创建的任何额外开销。

生成的随机数是可重复的,因为相同的种子将在线程数不变的情况下产生相同的输出。

from numpy.random import default_rng, SeedSequence
import multiprocessing
import concurrent.futures
import numpy as np

class MultithreadedRNG:
    def __init__(self, n, seed=None, threads=None):
        if threads is None:
            threads = multiprocessing.cpu_count()
        self.threads = threads

        seq = SeedSequence(seed)
        self._random_generators = [default_rng(s)
                                   for s in seq.spawn(threads)]

        self.n = n
        self.executor = concurrent.futures.ThreadPoolExecutor(threads)
        self.values = np.empty(n)
        self.step = np.ceil(n / threads).astype(np.int_)

    def fill(self):
        def _fill(random_state, out, first, last):
            random_state.standard_normal(out=out[first:last])

        futures = {}
        for i in range(self.threads):
            args = (_fill,
                    self._random_generators[i],
                    self.values,
                    i * self.step,
                    (i + 1) * self.step)
            futures[self.executor.submit(*args)] = i
        concurrent.futures.wait(futures)

    def __del__(self):
        self.executor.shutdown(False)

多线程随机数生成器可用于填充数组。values 属性显示填充前的零值和填充后的随机值。

In [2]: mrng = MultithreadedRNG(10000000, seed=12345)
   ...: print(mrng.values[-1])
Out[2]: 0.0

In [3]: mrng.fill()
   ...: print(mrng.values[-1])
Out[3]: 2.4545724517479104

可以使用多线程生成的所需时间与使用单线程生成的所需时间进行比较。

In [4]: print(mrng.threads)
   ...: %timeit mrng.fill()

Out[4]: 4
   ...: 32.8 ms ± 2.71 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

单线程调用直接使用 BitGenerator。

In [5]: values = np.empty(10000000)
   ...: rg = default_rng()
   ...: %timeit rg.standard_normal(out=values)

Out[5]: 99.6 ms ± 222 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

收益相当可观,即使对于中等大小的数组,缩放比例也相当合理。与不使用现有数组的调用相比,收益更大,因为避免了数组创建的开销。

In [6]: rg = default_rng()
   ...: %timeit rg.standard_normal(10000000)

Out[6]: 125 ms ± 309 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

请注意,如果用户未设置 threads,则它将由 multiprocessing.cpu_count() 确定。

In [7]: # simulate the behavior for `threads=None`, if the machine had only one thread
   ...: mrng = MultithreadedRNG(10000000, seed=12345, threads=1)
   ...: print(mrng.values[-1])
Out[7]: 1.1800150052158556