跳至主要内容
返回顶部
Ctrl
+
K
用户指南
API 参考
从源码构建
开发
发行说明
学习
更多
NEPs
选择版本
GitHub
用户指南
API 参考
从源码构建
开发
发行说明
学习
NEPs
选择版本
GitHub
章节导航
NumPy 的模块结构
数组对象
N 维数组 (
ndarray
)
numpy.ndarray
numpy.ndarray.flags
numpy.ndarray.shape
numpy.ndarray.strides
numpy.ndarray.ndim
numpy.ndarray.data
numpy.ndarray.size
numpy.ndarray.itemsize
numpy.ndarray.nbytes
numpy.ndarray.base
numpy.ndarray.dtype
numpy.ndarray.T
numpy.ndarray.real
numpy.ndarray.imag
numpy.ndarray.flat
numpy.ndarray.ctypes
numpy.ndarray.item
numpy.ndarray.tolist
numpy.ndarray.tostring
numpy.ndarray.tobytes
numpy.ndarray.tofile
numpy.ndarray.dump
numpy.ndarray.dumps
numpy.ndarray.astype
numpy.ndarray.byteswap
numpy.ndarray.copy
numpy.ndarray.view
numpy.ndarray.getfield
numpy.ndarray.setflags
numpy.ndarray.fill
numpy.ndarray.reshape
numpy.ndarray.resize
numpy.ndarray.transpose
numpy.ndarray.swapaxes
numpy.ndarray.flatten
numpy.ndarray.ravel
numpy.ndarray.squeeze
numpy.ndarray.take
numpy.ndarray.put
numpy.ndarray.repeat
numpy.ndarray.choose
numpy.ndarray.sort
numpy.ndarray.argsort
numpy.ndarray.partition
numpy.ndarray.argpartition
numpy.ndarray.searchsorted
numpy.ndarray.nonzero
numpy.ndarray.compress
numpy.ndarray.diagonal
numpy.ndarray.max
numpy.ndarray.argmax
numpy.ndarray.min
numpy.ndarray.argmin
numpy.ndarray.clip
numpy.ndarray.conj
numpy.ndarray.round
numpy.ndarray.trace
numpy.ndarray.sum
numpy.ndarray.cumsum
numpy.ndarray.mean
numpy.ndarray.var
numpy.ndarray.std
numpy.ndarray.prod
numpy.ndarray.cumprod
numpy.ndarray.all
numpy.ndarray.any
numpy.ndarray.__lt__
numpy.ndarray.__le__
numpy.ndarray.__gt__
numpy.ndarray.__ge__
numpy.ndarray.__eq__
numpy.ndarray.__ne__
numpy.ndarray.__bool__
numpy.ndarray.__neg__
numpy.ndarray.__pos__
numpy.ndarray.__abs__
numpy.ndarray.__invert__
numpy.ndarray.__add__
numpy.ndarray.__sub__
numpy.ndarray.__mul__
numpy.ndarray.__truediv__
numpy.ndarray.__floordiv__
numpy.ndarray.__mod__
numpy.ndarray.__divmod__
numpy.ndarray.__pow__
numpy.ndarray.__lshift__
numpy.ndarray.__rshift__
numpy.ndarray.__and__
numpy.ndarray.__or__
numpy.ndarray.__xor__
numpy.ndarray.__iadd__
numpy.ndarray.__isub__
numpy.ndarray.__imul__
numpy.ndarray.__itruediv__
numpy.ndarray.__ifloordiv__
numpy.ndarray.__imod__
numpy.ndarray.__ipow__
numpy.ndarray.__ilshift__
numpy.ndarray.__irshift__
numpy.ndarray.__iand__
numpy.ndarray.__ior__
numpy.ndarray.__ixor__
numpy.ndarray.__matmul__
numpy.ndarray.__copy__
numpy.ndarray.__deepcopy__
numpy.ndarray.__reduce__
numpy.ndarray.__setstate__
numpy.ndarray.__new__
numpy.ndarray.__array__
numpy.ndarray.__array_wrap__
numpy.ndarray.__len__
numpy.ndarray.__getitem__
numpy.ndarray.__setitem__
numpy.ndarray.__contains__
numpy.ndarray.__int__
numpy.ndarray.__float__
numpy.ndarray.__complex__
numpy.ndarray.__str__
numpy.ndarray.__repr__
numpy.ndarray.__class_getitem__
标量
数据类型对象 (
dtype
)
NumPy 中的数据类型提升
遍历数组
标准数组子类
掩码数组
数组接口协议
日期时间和时间增量
通用函数 (
ufunc
)
按主题分类的例程和对象
类型检查 (
numpy.typing
)
打包 (
numpy.distutils
)
NumPy C-API
数组 API 标准兼容性
CPU/SIMD 优化
线程安全
全局配置选项
NumPy 安全性
numpy.distutils
的状态和迁移建议
numpy.distutils
用户指南
NumPy 和 SWIG
NumPy 参考
数组对象
N 维数组 (
ndarray
)
numpy.ndarray.__neg__
numpy.ndarray.__neg__
#
方法
ndarray.
__neg__
(
/
)
#
-self
本页内容
ndarray.__neg__